Menu
Scientific revolution
Water Flowing On Mars, NASA Spacecraft Data Suggest

Light Shed On South Pole Dinosaurs

Why Plant 'Clones' Aren't Identical

Puffins 'Scout Out' Best Migration Route

New Conducting Properties Discovered in Bacteria-Produced Wires

Researchers Unravel the Magic of Flocks of Starlings

'Paranoia' About Rivals Alters Insect Mating Behavior

Billion-Year-Old Piece of North America Traced Back to Antarctica

You Can Count On This: Math Ability Is Inborn, New Research Suggests

Scientist Develops Virus That Targets HIV: Using a Virus to Kill a Virus

DNA Building Blocks Can Be Made in Space, NASA Evidence Suggests

Polar Dinosaur Tracks Open New Trail to Past

New Eruption Discovered at Undersea Volcano, After Successfully Forecasting the Event

Study Builds On Plausible Scenario for Origin of Life On Earth

Scientists Have New Help Finding Their Way Around Brain's Nooks and Crannies

Astronomy: A Spectacular Spiral in Leo

Hydrogen-Powered Symbiotic Bacteria Found in Deep-Sea Hydrothermal Vent Mussels

Deep Recycling in Earth Faster Than Thought

Engineers Reverse E. Coli Metabolism for Quick Production of Fuels, Chemicals

Genetically Modified 'Serial Killer' T-Cells Obliterate Tumors in Leukemia Patients

Biodiversity Key to Earth's Life-Support Functions in a Changing World

Darkest Known Exoplanet: Alien World Is Blacker Than Coal

Arctic Ice Melt Could Pause for Several Years, Then Resume Again

Like Humans, Chimps Are Born With Immature Forebrains

Decade-Long Study Reveals Recurring Patterns of Viruses in the Open Ocean

Simple Way to Grow Muscle Tissue With Real Muscle Structure
Researchers at Eindhoven University of Technology (TU/e) have found a simple way to grow muscle tissue with real muscle structure in the laboratory. They found that the muscle cells automatically align themselves if they are subjected to tension in one direction -- this is essential for the ability of the muscle cells to exert a force. The endothelial (blood vessel) cells in the culture also automatically grouped themselves to form new blood vessels. This finding is a step forward towards the engineering of thicker muscle tissue that can for example be implanted in restoration operations.

Another important aspect of the finding is that it was not necessary to add any biochemical growth factors to initiate the process. These substances are normally required for processes of this kind, but their action is difficult to control, according to TU/e researcher Dr. Daisy van der Schaft.

Disorganized

Other researchers have also succeeded in engineering muscle tissue containing blood vessels, but in these cases the muscle cells and blood vessels were disorganized. To give the muscles their strength, all the muscle cells need to be aligned in the same direction. Additionally, the muscles need blood vessels to supply them with oxygen and nutrients.

Tension

The TU/e research team produced engineered muscle tissue from a mixture of precultured stem cells and blood vessel cells (both from mice) in a gel. They then fastened the pieces of cultured tissue, measuring 2 x 8 mm, in one direction using pieces of Velcro. The stem cells then changed into muscle cells. This process normally involves shrinkage of the tissue. However, because the tissue was fastened this shrinkage was prevented, and the resulting tension caused the muscle cells to become aligned during the culturing process. This alignment is essential for the muscles to be able to exert a force.

Growth factors produced

In addition, the blood vessel cells organized themselves to form blood vessels, without the researchers needing to add any growth factors -- these were created automatically. Measurements by the researchers showed that the muscle cells produced the required growth factor themselves, as a result of the tension to which they were subjected.

Thicker tissue

The formation of blood vessels is an important step to allow the engineering of thicker muscle tissue. Up to now the maximum thickness that could be achieved was 0.4 mm, because the cells must be located no further than 0.2 mm from a blood vessel or other source of nutrients to ensure that they receive sufficient oxygen. The blood supply through the blood vessels means that in the near future it will be possible to feed the engineered muscle tissue from within, making it possible to culture thicker tissue.

Not just cosmetic

The aim of the research is ultimately to allow the treatment of people who have lost muscle tissue, for example through accidents or surgery to remove tumors. "Just one example is the restoration of facial tissue," explains Van der Schaft. Using these engineered muscle tissues would not just be cosmetic, but would give function back to the tissue." She expects that this should be possible within the next ten years.

One of the following steps to achieve this is the engineering of thicker muscle tissue, which the TU/e researchers will start working on in the near future. The same techniques will also have to be applied on human cells. "Researchers at the University Medical Center Groningen have already started, in partnership with us, to engineer human muscle tissue," Van der Schaft concludes.

Для печати

Polar Ice Caps Can Recover from Warmer Climate-Induced Melting, Study Shows

Sniffer Dogs Can Be Used to Detect Lung Cancer, Research Suggests

Further, Faster, Higher: Wildlife Responds Increasingly Rapidly to Climate Change

Simple Way to Grow Muscle Tissue With Real Muscle Structure

Parasite Uses the Power of Attraction to Trick Rats Into Becoming Cat Food

Growth of Cities Endangers Global Environment, According to New Analysis

Common Cause of All Forms of Amyotrophic Lateral Sclerosis (ALS) Discovered

Oldest Fossils On Earth Discovered

Plants and Fungi Play the 'Underground Market'

Galaxies Are Running out of Gas: Why the Lights Are Going out in the Universe

Antennas in Your Clothes? New Design Could Pave the Way

Astronomers Find Ice and Possibly Methane On Snow White, a Distant Dwarf Planet

Yeast's Epic Journey 500 Years Ago Gave Rise to Lager Beer


Menu
Smart Skin: Electronics That Stick and Stretch Like a Temporary Tattoo

Supernovae Parents Found: Clear Signatures of Gas Outflows from Stellar Ancestors

Hidden Soil Fungus, Now Revealed, Is in a Class All Its Own

Effortless Sailing With Fluid Flow Cloak

Research Reveals Genetic Link to Human Intelligence

Hidden Baja Undersea Park Is the World's Most Robust Marine Reserve

Searching for Spin Liquids: Much-Sought Exotic Quantum State of Matter Can Exist

How Butterflies Copy Their Neighbors to Fool Birds

Increased Tropical Forest Growth Could Release Carbon from the Soil

Fruit Bats Navigate With Internal Maps: Scientists Fit Bats With World's Smallest GPS Devices

Rapid Evolution Within Single Crop-Growing Season Increases Insect Pest Numbers

E. Coli, Salmonella May Lurk in Unwashable Places in Produce

Biologists Confirm Sunflower Domesticated in Eastern North America

Oldest Evidence of Nails in Modern Primates

Breathing New Life Into Earth: Evidence of Early Oxygen in the Oceans of Our Planet

Key Mechanism That Regulates Shape and Growth of Plants Discovered

Speaking and Understanding Speech Share the Same Parts of the Brain

Quantum Optical Link Sets New Time Records

It's a Small World, After All: Earth Is Not Expanding, NASA Research Confirms

Honeycomb Carbon Crystals Possibly Detected in Space

AIDS Researchers Isolate New Potent and Broadly Effective Antibodies Against HIV

Getting Inside the Mind (and Up the Nose) of Our Ancient Ancestors

Physicists Undo the 'Coffee Ring Effect'

Moon Younger Than Previously Thought, Analysis of Lunar Rock Reveals

Human Pathogen Killing Corals in the Florida Keys